HEAT TRANSFER BETWEEN A STREAM OF
LIQUID AND A POLYDISPERSION IN A
FLUIDIZED BED
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An approximate formula is derived for the heating time of particles in a fluidized polydisper-
sion bed.

Knowing the time in which particles will heat up to a given femperature is important in many chem-
ical engineering processes, in drying, and in heat treatment in intermittently operating fluidization beds.
While this problem can be solved easily in the case of a monodispersed material, and has been already
solved with various degrees of approximation [1-4], it is difficult to solve when the solid phase of a fluid-
ized bed contains a polydispersed material and the heat transfer particles of different sizes and at dif-
ferent temperatures must be taken into account., The problem is solved, to the first approximation, by
reducing it to the problem of heating a monodispersion bed whose particles are of an equivalent diameter
[1, 2], Many effects related to polydispersivity and often of crucial importance remain then neglected [5,
6].

We consider a homogeneous isothermal fluidized polydispersion bed in a reactor of uniform cross
section and with a given size distribution ¢ (R) of spherical particles for which the following normalization
applies:

R,
(@R drR=N. 1)
Rs
Let the heat transfer between particles and the medium begin after a hot fluidizing agent or a fresh
charge of cold material has been added. We will then assume that the temperature of the medium remains
at this time constant and equal to the entrance temperature. The conditions under which this premise is
valid follow directly from an analysis of the equations [1-3]:

0Vt tad = AT RPN (ts— 1),
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Indeed, if a4mR*N/cip VG = 0 or cgpgdnR°hN/3egpvg ~ 0, then tg ~toG. |

In subsequent calculations this condition will be assumed satisfied, In the course of heating up,
particles with radius R will receive heat not only from the fluidizing agent but also from other particles
at higher temperatures, while they will transmit heat to particles at lower temperatures through their
contact with them.

We will assume further that particles in a fluidized bed are heated by the following mechanism, which .
was first mentioned in [3]. The packet of particles heated to a reference temperature ¢ near the tempera-
ture of the medium comprises with it 2 homogeneous diluted bed containing also particles outside that-
packet at a lower temperature. In the course of heating, obviously, the number of elements in the fluid-
ized packet of particies will increase.

Noting that Bi —0 for the particles and that particles with smaller diameters heat up faster, we
write the equation of heat transfer between particles with radius R and the fluidized bed:
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An analogous equation has been derived in [5, 6] for a throughfeed
0t flow, but for a fluidized bed it simplifies, because the mean velocities
of the various fractions must all be considered equal to zero.

Equation (3) will now be rewritten as

1
; ,/ ‘ din®sR, 1) _ _ 3a(Ry R) @)
/] dv sk '
; Since R, is a function of time, we may write ¢« R, R) =a/(r, R)
2 5w * 0wz and the solution to (4) will be
Fig.1l. GraphofI = 1f(z). ' e ¥ :
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) R,=f0_:}3 == ) Here ®gR, 71) is the temperature of particles with the radius R at the
instant of time 7,, when the particles with radius R; have reached tem-
0? perature g. Temperature @s(R, 71) can be found analogously to (4), if
| I— L ] a (R_, R) is replaced by the coefficient of heat transfer between these
\/ T
5 P particles and a pure fluidizing agent — this coefficient being assumed
! L independent of time:
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Fig. 2. Results of calcula-
O (R, 0) =1, O(R, 1,)= 7
tions by formula (18) (solid s® 0 s 1) =0 o
curves) and by formula (24) taken into account, we have
(dashed curves). Time 7
(sec), radius R (m). n6g(R, )= — AR o ®)
cgpsR
and
T, = i& In J, . (9)
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Letting ®g®, 7) =g in (5), we find the time in which particles with radius R heat up to temperature
o. Since the heating time 7 will in this case depend on the radius R, one may write

@ [t(R), R] =a(R); dv— :% dR. 10)

Then (8), (9), and (10) yield ,
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Differentiating (12) with respect to R, we obtain

(13)
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From here

13[1_ Ry _daI(R')}dR'
ay (Ry) dR" | a(R)

(14)

The empirically found relation between the heat transfer coefficient and the particle dimensionsis
often approximated by a power law;

a,(R) = aR™, a(Requ):bquu, (15)
If the size distribution of particles is taken to follow the Rosine~Rammler relation [71]
P
oR=cew | ()| (16)
R, ;
with the polydispersivity index p = 1 and Ry »R;, Ry >R,, then
o "InRJR,
R.ou= ¥ 2 RyR . 17
equ= } 1 R—R: 17

With the aid of (15) and (17), (14) yields

Cs,’)sRl 1 i{ I (I/ER )_n I l
i P e .
where
Z = R/Rp
Z ’ e (19)
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For calculations we use empirical relations for the coefficient of heat transfer between particles and
pure gas [3]

Nu =0’12Re 1,03 pr0,54 (20)
or between a fluidized bed and an immersed surface [2]
o :29,5pg'2 706 036 o

For air at a 100°C temperature and flowing at a rate vg = 0.2 m/sec as the fluidizing agent, and for
corundum particles as the solid phase, we find (using system S1)

a=24,3, b=18,5, m=0,03, n—=—0,36. 22)

With the aid of a "Promin" computer, the integral (13) has been tabulated for chosen values of m and
n with z ranging from 1 to 1000.

The graph I = f(z) is shown in Fig. 1. This function can be approximated by the polynomial
g1 (z) = —0,021g°z + 0,07 1g* 2 40,30 1g®z —1,68 1g* 2

13,551gz 1,18 (23)
at z values not very close to unity.,
The graphs in Fig. 2 are based on formula (18) and on the approximate formula
- CPsReq® 1, L (24)

>

3a o
respectively, where Reqy has been determined from (17). Here ¢ = 10-2,

It is evident from the graphs that formulas (18) and (24) may differ either way and the difference may
be considerable especially for high values of the ratio R,/Ry.

When particles are distributed in discrete sizes, then the integration in (14) should be replaced by
a summation and

279



_ CsPsRy I !
©(Ru) 3 n \ oy (Ry)
[Ri—Ri_l % (Ri)“‘o‘l (R;_1) ] 1 1 (25)
R, o, (Ry) @ (R;_y)]

5

=2

If a fluidized bed comprises a mixture of particles of two sizes (M = 2), then

_C&g’imi{ 1 _L(Rz “I(Re)) L ) 26)

3 w(R) VR a(R) ) a®y) |’

T(R,) =

An analogous calculation according to this formula yields results which differ cons1derab1y {by up

to 100%) from those obtained by the approximate formula (24),

NOTATION
R, R, is the minimum and maximum radius of particles respectively, m;
N is the concentration of particles, m=3;
I Te P T is the specific heat of the medium and of the particles respectively, J/kg «°C;
PG Pg is the density of the medium and of the particle material respectively, kg/m3;
T is the time, sec;
R, is the maximum radius of particles heated up to the reference temperature ¢, m;
o R) is the coefficient of heat transfer between particles and fluidizing agent, W/ m?
+°C;
o @B, R) is the coefficient of heat transfer between fluidized bed and immersed surface,
W/m? -°C;
tg is the temperature of the medium, °C;
ts is the initial temperature, °C;
tys is the initial temperature of particles, °C;
= (tg-tog)/ teS—tog) is the relative temperature of particles;
Requ is the equivalent radius of a particle packet in the fluidized bed, m;
a,b,c are the dimensional constants;
VG is the velocity of medium, m/sec;
h is the height of bed, m;
¥l is the thermal conductivity of medium, W/m «°C;
Nu is the Nusselt number;
Re is the Reynolds number;
Pr is the Prandtl number;
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